Box-Behnken Design-Based Optimization of Treatment Parameters for Soluble Reactive Phosphorus Removal of Synthetic Wastewater using Immobilized Spirulina platensis Beads
DOI:
https://doi.org/10.11594/ijmaber.06.06.32Keywords:
alginate, immobilization, soluble reactive phosphorus, Spirulina platensis, wastewater treatmentAbstract
Soluble reactive phosphorus (SRP), a bioavailable phosphorus form, contributes to over-eutrophication by stimulating uncontrolled algal growth. This study aims to determine the optimum treatment parameters for the SRP removal from synthetic wastewater using the alginate-immobilized cyanobacteria Spirulina platensis. S. platensis was immobilized in alginate beads with varying alginate concentrations (2.5%, 3%, and 3.5% w/v), and subjected to varying operation time (1, 2, and 3 days), and bead dosage (1.5, 2, and 2.5 beads/mL) for SRP removal using Box-Behnken experimental design. Resulting model indicated a strong predictive relationship with R2 = 0.9253 and p = 0.0212. Main effects of bead dosage (p = 0.01372), its quadratic effect (p = 0.01643), and its interaction with alginate concentration (p = 0.00465) were found to be statistically significant. Predicted optimum parameters (2.5% w/v alginate, 3 days, and 1.5 beads/mL) were validated and resulted in a lower SRP removal of 92.80 ± 0.73% with a percent error of 5.22% relative to a predicted SRP removal of 97.91%. Extrapolation of the prediction model to 100% outside the experimental region was verified resulting in SRP removal of 97.39 ± 0.08% with a percent error of 2.61% was achieved by adjusting the operation time to 3.4 days. The study shows promising potential of immobilized S. platensis beads in addressing over-eutrophication through significant phosphorus reduction.
Downloads
References
Abdel Hameed, M. S. (2007). Effect of algal density in bead, bead size, and bead con-centrations on wastewater nutrient re-moval. African Journal of Biotechnology, 6(10), 1185-1191. https://www.ajol.info/index.php/ajb/article/view/57139
Banerjee, S., Tiwade, P. B., Sambhav, K., Banerjee, C., & Bhaumik, S. K. (2019). Ef-fect of alginate concentration in wastewater nutrient removal using algi-nate-immobilized microalgae beads: Up-take kinetics and adsorption studies. Bio-chemical Engineering Journal, 149, 107241. https://doi.org/10.1016/j.bej.2019.107241
Bouabidi, Z. B., El-Naas, M. H., & Zhang, Z. (2018). Immobilization of microbial cells for the biotreatment of wastewater: A re-view. Environmental Chemistry Letters, 17(1), 241–257. https://doi.org/10.1007/s10311-018-0795-7
Brandão, B. C. S., Oliveira, C. Y. B., Santos, E. P., Abreu, J. L. D., Oliveira, D. W. S., Cabral da Silva, S. M. B., & Gálvez, A. O. (2023). Mi-croalgae-based domestic wastewater treatment: A review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. Environmental Monitoring and As-sessment, 195(1384). https://doi.org/10.1007/s10661-023-12031-w
Calvo-López, A., Ymbern, O., Puyol, M., & Alonso-Chamarro, J. (2021). Soluble reac-tive phosphorus determination in wastewater treatment plants by automat-ic microanalyzers. Talanta, 221, 121508. https://doi.org/10.1016/j.talanta.2020.121508
Chai, W. S., Tan, W. G., Munawaroh, H. S. H., Gupta, V. K., Ho, S. H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater bio-treatment: A review. Environmental Pol-lution, 269, 116236. https://doi.org/10.1016/j.envpol.2020.116236
Chaieb, K., Kouidhi, B., Ayed, L., Hosawi, S. B., Abdulhakim, J. A., Hajri, A., & Altayb, H. N. (2023). Enhanced textile dye removal from wastewater using natural bio-sorbent and Shewanella algae B29: Ap-plication of Box Behnken design and ge-nomic approach. Bioresource Technology, 374, 128755. https://doi.org/10.1016/j.biortech.2023.128755
Chen, X., Lee, Y., Yuan, T., Lei, Z., Adachi, Y., Zhang, Z., Lin, Y., & Van Loosdrecht, M. C. (2022). A review on recovery of extracel-lular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges. Bioresource Technology, 363, 127854. https://doi.org/10.1016/j.biortech.2022.127854
Cruz, I., Bashan, Y., Hernàndez-Carmona, G., & De-Bashan, L. E. (2013). Biological dete-rioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied Microbiology and Biotechnology, 97(22), 9847–9858. https://doi.org/10.1007/s00253-013-4703-6
de-Bashan, L. E., & Bashan, Y. (2010). Immobi-lized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101(6), 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043
Department of Environment and Natural Re-sources. (2021). Water quality guidelines and general effluent standards of 2016 (DENR Administrative Order No. 2021-XX, Sec. 5.3). https://www.denr.gov.ph/
Domini, M., Abbà, A., & Bertanza, G. (2022). Analysis of the variation of costs for sew-age sludge transport, recovery, and dis-posal in Northern Italy: A recent survey (2015–2021). Water Science & Technolo-gy, 85(4), 1167–1175. https://doi.org/10.2166/wst.2022.040
El-Sheekh, M., Morsi, H., & Hassan, L. (2020). Growth Enhancement of Spirulina platen-sis through Optimization of Media and Ni-trogen Sources. Egyptian Journal of Botany, 0(0), 0. https://doi.org/10.21608/ejbo.2020.27927.1487
Eroglu, E., Smith, S. M., & Raston, C. L. (2015). Application of various immobilization techniques for algal bioprocesses. In Bi-omass and Biofuels from Microalgae (pp. 19–44). Springer. https://doi.org/10.1007/978-3-319-16640-7_2
Ghaeni, M., & Roomiani, L. (2016). Effects of Spirulina, microalgae. Journal of Ad-vanced Agricultural Technologies, 3(2), 114-117. https://doi.org/10.18178/joaat.3.2.114-117
Gichana, Z., Liti, D., Drexler, S., Zollitsch, W., Meulenbroek, P., Wakibia, J., Ogello, E., Akoll, P., & Waidbacher, H. (2019). Ef-fects of aerated and non-aerated biofil-ters on effluent water treatment from a small-scale recirculating aquaculture sys-tem for Nile tilapia (Oreochromis nilot-icus L.). Die Bodenkultur Journal of Land Management Food and Environment, 70(4), 209–219. https://doi.org/10.2478/boku-2019-0019
Halim, A. A., & Haron, W. N. a. W. (2021). Im-mobilized Microalgae using Alginate for Wastewater Treatment. Pertanika Jour-nal of Science & Technology, 29(3). https://doi.org/10.47836/pjst.29.3.34
Hossain, S. M. Z., Alnoaimi, A., Razzak, S. A., Ezuber, H., Al‐Bastaki, N., Safdar, M., Al-kaabi, S., & Hossain, M. M. (2018). Multi-objective optimization of microalgae (Chlorella sp.) growth in a photobioreac-tor using Box‐Behnken design approach. The Canadian Journal of Chemical Engi-neering, 96(9), 1903–1910. https://doi.org/10.1002/cjce.23168
Hossain, S. M. Z., Sultana, N., Jassim, M. S., Coskuner, G., Hazin, L. M., Razzak, S. A., & Hossain, M. M. (2022). Soft-computing modeling and multiresponse optimization for nutrient removal process from munic-ipal wastewater using microalgae. Jour-nal of Water Process Engineering, 45, 102490. https://doi.org/10.1016/j.jwpe.2021.102490
Huno, S. K., Rene, E. R., van Hullebusch, E. D., & Annachhatre, A. P. (2018). Nitrate re-moval from groundwater: a review of natural and engineered processes. Jour-nal of Water Supply: Research and Tech-nology—AQUA, 67(8), 885-902
Karydis, M. (2013). Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST Journal, 11(4), 373–390. https://doi.org/10.30955/gnj.000626
Khatoon, H., Penz, K. P., Banerjee, S., Rahman, M. R., Minhaz, T. M., Islam, Z., Mukta, F. A., Nayma, Z., Sultana, R., & Amira, K. I. (2021). Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresource Technology, 338, 125529. https://doi.org/10.1016/j.biortech.2021.125529
Klokk, T. I., & Melvik, J. E. (2002). Controlling the size of alginate gel beads by use of a high electrostatic potential. Journal of Mi-croencapsulation, 19(4), 415–424. https://doi.org/10.1080/02652040210144234
Lee, B., Ravindra, P., & Chan, E. (2013). Size and shape of calcium alginate beads pro-duced by extrusion dripping. Chemical Engineering & Technology, 36(10), 1627–1642. https://doi.org/10.1002/ceat.201300230
Li, Y., Wu, X., Liu, Y., & Taidi, B. (2024). Immo-bilized microalgae: Principles, processes, and its applications in wastewater treat-ment. World Journal of Microbiology and Biotechnology, 40(150). https://doi.org/10.1007/s11274-024-03930-2
Lin, Y., & Tanaka, S. (2006). Oxygen transfer and mixing in bioreactors: A review.
Biochemical Engineering Journal, 30(1), 1–7. https://doi.org/10.1016/j.bej.2005.11.010
Maali, A., Gheshlaghi, R., & Mahdavi, M. A. (2024). Maximizing key biochemical products of Spirulina platensis: optimal light quantities and best harvesting time. OCL, 31, 21. https://doi.org/10.1051/ocl/2024019
Malone, T., & Newton, A. (2020). Effects of nu-trient pollution in marine ecosystems are compounded by human activity. Frontiers in Marine Science. https://phys.org/news/2020-08-effects-nutrient-pollution-marine-ecosystems.html
Molinuevo-Salces, B., Riaño, B., Hernández, D., & García-González, M. C. (2019). Microal-gae and wastewater treatment: Ad-vantages and disadvantages. In M. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 505–533). Springer. https://doi.org/10.1007/978-981-13-2264-8_20
Mollamohammada, S. (2020). Nitrate and herbicides removal from groundwater using immobilized algae (Doctoral disser-tation). University of Nebraska-Lincoln. https://digitalcommons.unl.edu/civilengdiss/154
Mazur, L. P., Cechinel, M. A., De Souza, S. M. U., Boaventura, R. A., & Vilar, V. J. (2018). Brown marine macroalgae as natural cat-ion exchangers for toxic metal removal from industrial wastewaters: A review. Journal of Environmental Management, 223, 215–253. https://doi.org/10.1016/j.jenvman.2018.05.086
Oldenborg, K. A., & Steinman, A. D. (2019). Im-pact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Science of the Total Environ-ment, 650, 1969-1979.
Osman, G. A., Ali, M. S., Kamel, M. M., & Amber, S. G. (2011). The role of Cladophora sp. and Spirulina platensis in the removal of microbial flora in Nile water. New York Science Journal, 4(3), 8–17, 4(3). http://www.sciencepub.net/newyork
Paerl, H. W. (2009). Controlling eutrophication along the freshwater–marine continuum: Dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32(4), 593–601. https://doi.org/10.1007/s12237-009-9158-8
Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). Determination of phosphate. In Elsevier eBooks (pp. 22–25). https://doi.org/10.1016/b978-0-08-030287-4.50015-3
Porkka, T. (2021). Optimization of microalgal immobilization for cultivation in aquacul-ture wastewater (Master's thesis). Uni-versity of Eastern Finland. https://erepo.uef.fi/items/19c210d8-376e-4ee2-82f2-6071d70371bb
Purev, O., Park, C., Kim, H., Myung, E., Choi, N., & Cho, K. (2023). Spirulina platensis im-mobilized alginate beads for removal of Pb(II) from aqueous solutions. Interna-tional Journal of Environmental Research and Public Health, 20(2), 1106. https://doi.org/10.3390/ijerph20021106
Patnaik, S., Sarkar, R., & Mitra, A. (2001). Algi-nate immobilization of Spirulina platensis for wastewater treatment. Indian journal of experimental biology, 39(8), 824–826. https://pubmed.ncbi.nlm.nih.gov/12018590/
Rajasekaran, C., Ajeesh, C. P. M., Balaji, S., Shalini, M., Siva, R., Das, R., Fulzele, D. P., & Kalaivani, T. (2015). Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak Journal of Sci-ence and Technology (WJST), 13(1), 67–75. https://www.researchgate.net/publication/291699334_Effect_of_Modified_Zarrouk's_Medium_on_Growth_of_Different_Spirulina_Strains
Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanul-lah, I., & Mohammad, A. W. (2022). Car-bon nanotubes-based adsorbents: Prop-erties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process En-gineering, 47, 102815. https://doi.org/10.1016/j.jwpe.2022.102815
Shpigel, M., Neori, A. (2007). Microalgae, Macroalgae, and Bivalves as Biofilters in Land-Based Mariculture in Israel. In: Bert, T.M. (eds) Ecological and Genetic Impli-cations of Aquaculture Activities. Meth-ods and Technologies in Fish Biology and Fisheries, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6148-6_24
Santos, A. F., Mendes, L. S., Alvarenga, P., Gan-do-Ferreira, L. M., & Quina, M. J. (2024). Nutrient Recovery via Struvite Precipita-tion from Wastewater Treatment Plants: Influence of Operating Parameters, Coex-isting Ions, and Seeding. Water, 16(12), 1675. https://doi.org/10.3390/w16121675
Tam, N., & Wong, Y. (2000). Effect of immobi-lized microalgal bead concentrations on wastewater nutrient removal. Environ-mental Pollution, 107(1), 145–151. https://doi.org/10.1016/s0269-7491(99)00118-9
Taqiyyah, A. M., Risjani, Y., Prihanto, A. A., Yanuhar, U., & Fadjar, M. (2022). Effect of Aquaculture Wastewater And Zarrouk in Increasing Biomass, Protein, and Carote-noids levels of Spirulina platensis. Jurnal Ilmiah Perikanan Dan Kelautan. https://doi.org/10.20473/jipk.vi.40822
Velusamy, K., Periyasamy, S., Kumar, P. S., Vo, D. V. N., Sindhu, J., Sneka, D., & Sub-hashini, B. (2021). Advanced techniques to remove phosphates and nitrates from waters: A review. Environmental Chemis-try Letters, 19, 3165–3180. https://link.springer.com/article/10.1007/s10311-021-01239-2
Vonshak, A. (1997). Spirulina platensis arthro-spira. In CRC Press eBooks. https://doi.org/10.1201/9781482272970
Wang, L., Liu, X., Li, Z., Wan, C., & Zhang, Y. (2023). Filamentous aerobic granular sludge: A critical review on its cause, im-pact, control and reuse. Journal of Envi-ronmental Chemical Engineering, 11(3), 110039. https://doi.org/10.1016/j.jece.2023.110039
Xu, S., Li, Z., Yu, S., Chen, Z., Xu, J., Qiu, S., & Ge, S. (2024). Microalgal–bacteria biofilm in wastewater treatment: Advantages, prin-ciples, and establishment. Water, 16(18), 2561. https://doi.org/10.3390/su162411196
Yang, Z., Pei, H., Han, F., Wang, Y., Hou, Q., & Chen, Y. (2018). Effects of air bubble size on algal growth rate and lipid accumula-tion using fine-pore diffuser photobiore-actors. Algal Research, 32, 293–299. https://doi.org/10.1016/j.algal.2018.04.016
You, F., Fan, Y., Tang, L., Liu, X., Jin, C., Zhao, Y., Wang, Y., & Guo, L. (2025). Optimiza-tion of Phaeodactylum tricornutum culti-vation for enhancing mariculture wastewater treatment and high value product recovery using Box–Behnken de-sign. Process Safety and Environmental Protection, 107022. https://doi.org/10.1016/j.psep.2025.107022
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).














