

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY: APPLIED BUSINESS AND EDUCATION RESEARCH

2025, Vol. 6, No. 5, 2345 – 2352

<http://dx.doi.org/10.11594/ijmaber.06.05.20>

Research Article

2D and 360° Images: Enhancing Interest and Performance Tasks in Contemporary Arts

Ruth M. Calvento^{1*}, Jherwin P. Hermosa²

¹Department of Education, Cristobal S. Conducto Memorial Integrated National High School, 4000, Philippines

²Graduate Studies & Applied Research, Laguna State Polytechnic University, 4000, Philippines

Article history:

Submission 03 April 2025

Revised 30 April 2025

Accepted 23 May 2025

*Corresponding author:

E-mail:

ruth.madriaga@deped.gov.ph

ABSTRACT

Contemporary Philippine arts in senior high schools demands innovative approaches to engage students meaningfully. Although virtual reality and 360° videos have been explored in educational settings, limited research has investigated the impact of 360-degree photos, particularly in the context of Philippine Contemporary Arts education. This study addresses this gap by examining the effectiveness of semi-immersive imagery in enhancing student learning. This study aimed to determine the effectiveness of 2D and 360-degree images in improving the learning interest and performance tasks of Grade 12 students in Philippine Contemporary Arts. A quasi-experimental design was employed, involving a control group exposed to traditional 2D images and an experimental group using 360-degree images. Data were collected using pre-tests, post-tests survey which were validated instrument that measured four indicators of learning interest: pleasure, attention, interest, and engagement. Findings revealed that students in the 360-degree group demonstrated significantly higher post-test scores and stronger learning interest across all indicators ($p < 0.05$) compared to the 2D group. Moreover, their performance tasks showed greater improvement, with mean scores increasing from 13.00 ("Good") to 16.00 ("Excellent"). Outputs from the 360-degree group reflected enhanced creativity, spatial awareness, and curatorial thinking. In contrast, the 2D group's work, while technically accurate, less imaginative in depth and showed limited growth. The study affirms the effectiveness of 360-degree photo integration in fostering both cognitive and affective learning outcomes in art education. However, the study is limited in scope, as it involved only one public high school, a specific subject (Contemporary Arts), and a relatively small sample size. Additionally, the intervention period was brief, and long-term retention and applicability across different disciplines were not explored. Despite these limitations, the

How to cite:

Calvento, R. M. & Hermosa, J. P. (2025). 2D and 360° Images: Enhancing Interest and Performance Tasks in Contemporary Arts. *International Journal of Multidisciplinary: Applied Business and Education Research*. 6(5), 2345 – 2352. doi: 10.11594/ijmaber.06.05.20

findings provide valuable insights into the use of 360-degree imagery as an accessible and engaging tool for enhancing arts instruction in the Philippine senior high school context.

Keywords: *Virtual Reality, 360-degree images, Student engagement, Art education, Technology in education*

Introduction

The integration of technology in education has fundamentally transformed the ways in which students interact with and absorb learning materials. Digital innovations from interactive multimedia to immersive virtual environments—have shifted traditional pedagogical approaches toward models that prioritize engagement, interactivity, and personalized learning. In the realm of art education, where sensory experience and aesthetic appreciation are paramount, this technological evolution is especially pertinent.

In the Philippine educational landscape, contemporary art has historically been underappreciated. This under-recognition stems partly from limited exposure and the predominance of didactic teaching methods, which fail to capture the dynamism and cultural resonance of Philippine Contemporary Arts. As students in this context often interact with art solely through static images or textbook descriptions, there is a pressing need to revitalize art instruction and foster a deeper, more personal connection with local artistic expressions.

Recent advances in immersive visual technology offer promising avenues for bridging this gap. Among these, 360-degree images have emerged as accessible yet potent tools for creating semi-immersive learning environments. Research indicates that such immersive media can lead to higher levels of student engagement, improved attention, and increased participation in classroom activities. Studies in related fields have demonstrated that immersive visual experiences—whether via virtual reality (VR) or panoramic imagery—can enrich students' learning by providing them with contextualized, multi-sensory experiences that traditional 2D media cannot offer.

This study is underpinned by several theoretical frameworks that emphasize active and

experiential learning. Experiential Learning Theory (Kolb, 1984) posits that learning occurs as students encounter and reflect on real-world experiences. By integrating immersive 360-degree images into art instruction, the study leverages this theory to create learning experiences that are both engaging and reflective. Additionally, Technology-Enhanced Learning (TEL) Theory supports the use of digital tools to create interactive, learner-centered educational environments, suggesting that technology can bridge gaps in traditional methods and cater to diverse learning styles.

A comprehensive review of the literature reveals that while there is substantial research on the use of VR and 360-degree videos to enhance educational outcomes, there is a notable paucity of studies focusing specifically on the application of 360-degree photos in art education. Prior research has primarily concentrated on how immersive technologies impact learning outcomes and performance in various subjects; however, the unique potential of 360-degree photos—offering immersive yet accessible experiences without the high cost and technical demands of full VR—remains underexplored, particularly within the context of Philippine Contemporary Arts.

The significance of this study, therefore, lies in its attempt to fill this research gap. By investigating the effectiveness of 360-degree images in enhancing learning interest and performance tasks among Grade 12 students, this study seeks not only to improve the delivery of Contemporary Arts instruction but also to provide empirical evidence that supports the integration of semi-immersive digital tools in the classroom. Ultimately, the findings are anticipated to offer valuable insights for educators and policymakers striving to enrich Philippine art education and stimulate a renewed appreciation for local contemporary arts.

Methods

This research used a quasi-experimental approach through two groups, a control group who were given traditional 2D images and an experimental group who were provided with 360-degree images. This approach was used to permit comparison between two naturally occurring groups within the school environment where it was not possible to have random assignment. This intervention was carried out to find out the influence of varying levels of visual content on the student's learning interest and performance tasks in Philippine Contemporary Arts.

There were 142 Grade 12 students from Cristobal S. Conducto Memorial Integrated National High School (CSCMINHS) who took part in the study in the academic year 2024-2025. Students belonging to STEM and GAS tracks comprised the population. Intact class sections were assigned into control and experimental groups through cluster sampling to reduce selection bias but maintain classroom dynamics.

To gather the overall data, the study used the following tools:

Pre and Post Assessments. These measured learning interest and performance tasks of students prior to and after the intervention. The content of the test was validated by subject matter specialists and pilot-tested for relevance and clarity.

Survey Questionnaire. A Likert-scale survey was developed based on previously validated instruments (Ariyanti & Kurniawati, 2020) to assess the interest in learning based on four indicators: pleasure, attention, interest, and motivation. The survey provided a Cronbach's alpha internal consistency score of 0.89, reflecting high reliability.

Rubric-Bases Performance Task. Students were assessed via performance tasks in accordance with the DepEd curriculum. A standardized rubric was applied to assess outputs on creativity, conceptualization and artistic implementation. Inter-rater reliability was achieved

through calibration sessions with two master-teachers.

Procedure

Both groups received the same content and length of instruction, with the only difference being the method of visual presentation. The control group saw static 2D images, whereas the experimental group engaged with 360-degree images through mobile devices, laptops and classroom televisions. Pre-assessments were given before the intervention, followed by five-weeks of visually based instruction, ending with post-assessment and performance tasks presentation. To counter possible biases, teachers were unaware which students were in the control or experimental group when grading the performance tasks. The same teacher taught the two groups with ready-made lessons to ensure instructional consistency. Environmental conditions such as setting, equipment, duration were maintained equal for both groups.

Data Analysis

Quantitative data were processed using descriptive statistics (mean, standard deviation) to report learning interest and performance scores. An independent samples t-test was used to establish significant differences between the control and experimental groups at a significance level of $p < 0.05$.

Findings on Learning Interest

The comparison of pre and post intervention results indicated a significant increase in the learning interest of learners who were exposed to 360-degree images. The experimental group had consistently higher attention, engagement, pleasure, and interest in Philippine Contemporary Arts than the control group. These results are graphically presented in Figure 1, and it shows the difference in levels of learning interest between the two groups.

Paired Samples Test								
Paired Differences								
	Mean	Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference		t	df	Sig. (2-tailed)
				Lower	Upper			
2D Photos								
Feeling of Pleasure	-.01408	.98275	.11663	-.24670	.21853	-.121	70	.904
Student Interest	-.17606	1.08778	.12910	-.43353	.08142	-1.364	70	.177
Student Attention	-.14429	.81754	.09702	-.33780	.04922	-1.487	70	.141
Student Engagement	-.18451	1.00380	.11913	-.42210	.05309	-1.549	70	.126
360° Photos								
Feeling of Pleasure	-.44085	.87122	.10339	-.64706	-.23463	-4.264	70	.000
Student Interest	-.47324	.91370	.10844	-.68951	-.25697	-4.364	70	.000
Student Attention	-.54523	.89715	.10647	-.75758	-.33287	-5.121	70	.000
Student Engagement	-.44648	1.00140	.11884	-.68351	-.20945	-3.757	70	.000

Legend: Sig. (2-tailed) < 0.05 – Statistically Significant Difference; Sig. (2-tailed) ≥ 0.05 – Not Statistically Significant

Figure 1. Test of Difference 2D photos and 360° photos

This result validates the assertion of researchers like Radianti et al. (2020), who established that interactive visual aids like 360-degree formats promote increased learner engagement by mimicking real life experiences. Utilizing 360-degree imaged presented a more interactive setting that piqued the interest of students and evoked an emotional response to the material, which 2D images could not attain.

Findings on Academic Performance

Performance tasks were assessed based on a standardized rubric covering creativity, conceptual understanding and critical analysis. As shown in Figure 2, students in the experimental group achieved higher mean scores than those in the control group.

	Before			After		
	Mean	SD	VI	Mean	SD	VI
2D photos group	14.18	.990	Excellent	15.00	.000	Excellent
360°photos group	13.00	.000	Good	16.00	.000	Excellent

Legend: 14-16 (Excellent); 11-13 (Good); 8-10 (Satisfactory); 5-7 (Below Average); 0-4 (Poor)

Figure 2. Student Performance Tasks Before and After Using 2D & 360°Photos

This demonstrates stronger artistic expression, spatial awareness, and the ability to interpret and contextualize artworks. The consistent improvement among students in the experimental group is significant: all participants attained “Excellent” rating in post task performance, and a standard error of 0 indicated uniform mastery across the group. This finding reflects the assertion of Mayer’s Cognitive Theory

of Multimedia Learning (2005), which emphasizes that dual-channel processing (visual + spatial) can improve conceptual understanding and retention, evident in the students’ enhanced creative outputs.

Comparative Analysis

A t-test comparison verified a statistically significant difference in post-test between the

control group and experimental groups ($t=6.952$, $p < .000$). The control group made modest gains, whereas the experimental group made significant improvement, supporting the

efficacy of 36-degree photos in enhancing learning interest as well as academic achievement.

Independent T-test							
Paired Differences							
Mean	Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference		t	df	Sig. (2-tailed)
			Lower	Upper			
2D photos	.817	.990	.118	-1.051	-.583	-6.952	.000

Legend: Sig. (2-tailed) < 0.05 – Statistically Significant Difference; Sig. (2-tailed) ≥ 0.05 – Not Statistically Significant

Figure 3. Test of Difference in the 2D photos and 360-degree photos group

This is in agreement with research by Huang et al. (2021) which established that semi-immersive tools such as 360-degree images fill the middle ground between availability and interaction. Compared to virtual reality, which uses costly equipment, 36-degree images are an affordable and cost-effective strategy for resource-constrained schools.

Conclusion

This research finds that incorporating 360-degree images in Philippine Contemporary Arts education improve students' interest in learning and performance activities greatly. The interactive nature of such images leads to higher concentration, richer appreciation, and greater creativity than in 2D materials. As the results are statistically significant (p -values =0.000), teachers are advised to use 36-degree photos more frequently in related school subjects to enhance teaching. Students are similarly encouraged to review such content while working on projects and performance tasks to extend their own knowledge and artistic expression. Although the results are encouraging, the small scope of the study, examining only one subject area, in one school environment, for a brief intervention period raises the need for additional investigation. Long-term influence of 360-degree imagery may be conducted for its effect on creativity, critical thinking, and academic motivation among different educational setups in future studies.

Acknowledgement

Heartfelt appreciation goes to Mr. Kenneth Darryl O. Calvento, the researcher's husband, and her family for their unconditional love and support throughout this journey. Their encouragement has been invaluable.

Sincere thanks to Mr. Jherwin P. Hermosa, the research adviser, for his invaluable guidance, insightful suggestions, and unwavering support from the conceptualization of the thesis to the final defense.

Gratitude is also extended to Dr. Mario R. Briones, University President, for supporting professional development, and Dr. Edilberto Z. Andal, Dean of College Teacher Education - Graduate Studies and Applied Research, along with Mrs. Rona Christina M. Almazan, Mrs. Reyna B. Angeles, and Mrs. Anna Liza P. Del Rosario, for their encouragement and guidance.

Special appreciation goes to Dr. Editha M. Atendido, CESO V of Division of Laguna, for her support in allowing the study to be conducted, and to Dr. Nenita B. Evasco, school principal, for her consideration and assistance.

Deep gratitude is given to Mrs. Marita B. Dinglasy, Mrs. Frennie C. Matining, Mrs. Cherrie C. Manaloto, and Dr. Alvin O. Insorio for their expertise in improving and validating the research instrument.

The researcher is also thankful to the Grade 12 students of Cristobal S. Conducto Memorial Integrated National High School for their

participation, which contributed significantly to the study's success.

References

Abinum, (2017). *What's Wrong with Filipino Art and Why is It Under-Appreciated?*

Adam, S. (2004). *Using learning outcomes: A consideration of the nature, role, application and implications for European education of employing "learning outcomes" at the local, national and international levels.*

Ainley, M. (2011). *Interest, engagement and attention in learning.* In S. Jarvela (Ed.), *Social and emotional aspects of learning.*

Al Haddar, M., & Azmi, N. (2020). The role of conventional visual aids in sustaining student motivation and engagement. *Journal of Educational Research and Innovation*, 18(2), 45-62.

Arafah, K. (2020). *Engaging students in social science learning: Strategies and techniques.*

Arliyanti, L., & Kurniawati, A. (n.d.). *Indicators of student interest in learning using Likert-scale methodology.*

August, T., Al-Amri, M., et al. (2016). *Impact of virtual reality use on the teaching and learning process.* *Frontiers in Education*.

Barron, B., & Martin, C. K. (2016). *Interest and self-directed learning in formal and informal settings.*

Beeland, W. D. (2001). Student engagement, visual learning, and multimedia applications in the classroom. *Journal of Interactive Learning Research*, 12(3), 235-250.

Bligh, D. (2000). *What's the use of lectures?* Jossey-Bass.

Bunce, D. M., Flens, E. A., & Neiles, K. Y. (2010). *How long can students pay attention in class? A study of student attention decline using clickers.* *Journal of Chemical Education*, 87(12), 1438-1443.

Cecotti, H. (2022). The COVID-19 global pandemic as a catalyst for increasing the needs of VR applications dedicated to cultural heritage.

Chiu, P. H., Hwang, G. J., & Hsia, L. H. (2022). *Enhancing artwork appreciation through experiential learning-based virtual reality (EL-SVVR).*

Clark, R. E. (2006). *Virtual reality as a tool in education.*

Contemporary Art: Definition | IESA International. (2022).

Contemporary Philippine Arts from the Region (MELC). (n.d.).

DepEd ADM Module. (n.d.). *Philippine Contemporary Arts from the Regions: A teaching guide.* Department of Education.

DepEd ADM Module. (n.d.). *Philippine Contemporary Arts Meanings and Forms.*

DepEd. (n.d.). *Guidelines for streamlined K to 12 curriculum.*

Dewey, J. (1938). *Experience and education.* Macmillan.

Dewey, J. (n.d.). *Learning by doing.*

Dierking, L. D., Rennie, L. J., Anderson, D., & Ellenbogen, K. (2003). *The influence of informal learning experiences on science education.*

Efland, A. D. (2002). *Art and cognition: Integrating the visual arts in the curriculum.* Teachers College Press.

Falk, J. H., & Storksdiek, M. (2010). *Using emotions to facilitate meaning-making in educational settings.*

Gilbert, J. (2017). *The role of virtual reality in STEM education.*

Google Arts & Culture. (n.d.). *The confusion between modern and contemporary art.*

Guerra-Tamez, K. (2023). The role of immersive virtual reality in art and design education: A case study on student engagement and flow experiences. *Journal of Immersive Learning & Technology*, 5(1), 22-40.

Harper, S. R., & Quaye, S. J. (2007). *Beyond involvement and participation: Engaging diverse learners in education.*

Hattie, J. (2009). *Visible learning: A synthesis of over 800 meta-analyses relating to achievement.* Routledge.

Heizenrader, (2019). *The 3 Types of Virtual Reality – Heizenrader.*

Hidi, S., & Renninger, K. A. (2006). *Individual interest, self-regulation, and self-directed language learning.*

Hussey, T., & Smith, P. (2003). *The uses of learning outcomes.*

Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. *Computers & Education*, 123, 109. 123. <https://doi.org/10.1016/j.compedu.2018.05.002>

Indriyanti, H., & Sari, D. P. (2017). *Engaging students in art education through multiple stakeholder involvement*. International Journal of Science and Research (IJSR). (2010). *Virtual reality and its applications in education*.

Iter, L. (2017). *Using Performance Task-GRASPS to assess student performance in higher education courses*.

Kangoz, C., & Bayson, M. (2018). *Using photography in social studies education to improve academic performance*.

Kaplan-Rakowski, R., Johnson-Glenberg, M. C., & Dewey, D. (2021). 2D vs. 3D images in vocabulary acquisition: The impact of cognitive processing in language learning. *Educational Technology Research & Development*, 69(3), 487502. <https://doi.org/10.1007/s11423-021-09974-3>

Keller, J. M. (2010). *Motivational design for learning and performance: The ARCS model approach*. Springer.

Kim, M., Lim, K., & Ryu, H. (2022). Enhancing student engagement and focus through 360-degree virtual reality content in education. *Educational Technology & Society*, 25(4), 98-112.

Kolb, D. A. (1984). *Experiential learning: Experience as the source of learning and development*. Prentice-Hall.

Kolb, D. A. (1984). *Experiential learning: Experience as the source of learning and development*. Prentice-Hall.

Lege, J., & Bonner, E. (2020). *The future of virtual reality in education: Mass-market accessibility and applications*.

Likert, R. (1932). *A technique for the measurement of attitudes*. *Archives of Psychology*, 22(140), 1-55.

Lin, J., Lee, S., & Chen, P. (2023). The effects of virtual reality in enhancing student engagement: A critical review. *Educational Research Review*, 38, 100423. <https://doi.org/10.1016/j.edurev.2023.100423>

Lin, S., Wang, R., & Mokmin, S. (2024). The application of virtual reality in education: A systematic review of student cognitive, behavioral, and affective engagement. *Computers & Education*, 145, 103674. <https://doi.org/10.1016/j.compedu.2024.103674>

Lin, T. Y., Chen, Y. W., & Lin, C. H. (2020). *Enhancing digital painting appreciation through virtual reality*.

Lowood, H. (2022). *Virtual reality (VR) / Definition, development, technology, examples*.

Makransky, G., & Mayer, R. E. (2022). Benefits of immersion in virtual reality for learning: A meta-analysis. *Educational Psychology Review*, 34(3), 789-818. <https://doi.org/10.1007/s10648-022-09688-0>

Mathivanan, S., et al. (2017). *The future of virtual reality and its applications*.

Matyushina, M. (2020). Exploring the impact of virtual tours on student engagement: A study of 360-degree interactive experiences in art education. *Journal of Digital Learning & Technology*, 8(2), 112-127.

Mayer, R. E. (2005). *Cognitive theory of multimedia learning*. Cambridge University Press.

Nakata, Y., et al. (2022). *Enhancing museum education with 360-degree video technology*.

Nurna, T., & Rudi, A. (2020). *The influence of students' learning environment on enthusiasm for learning*.

O'Connor, K. (2002). *How to grade for learning: Linking grades to standards*. Corwin Press.

Omrod, J. E. (2008). *Educational psychology: Developing learners* (6th ed.). Pearson Education.

Omrod, J. E. (2008). *Educational psychology: Developing learners* (6th ed.). Pearson Education.

Onyema, E. M., Eucheria, N. C., Obafemi, F. A., Sen, S., Atonye, F. G., Sharma, A., & Alsayed, A. O. (2020). Impact of COVID-19 pandemic on education: Challenges and opportunities. *Higher Education Research & Development*.

Paivio, A. (1986). *Mental representations: A dual-coding approach*. Oxford University Press.

Passig, D. (2003). *The role of virtual reality in the evolution of education*.

Perez, S. (2022, July). Kids in the United States now watch twice as many videos per day as they did four years ago.

Philstar. (2024). The Philippines' ranking in the 2022 PISA test on creative thinking.

Piaget, J. (1952). *The origins of intelligence in children*. Norton.

Piovesan, S. D., et al. (2012). *Virtual reality as a tool in education*.

Radianti, J., et al. (2019). *The impact of immersive virtual reality in higher education: A systematic review*.

Renninger, K. A., & Hidi, S. (2015). *Interest development and self-regulation in learning*.

Rønnow-Rasmussen, T. (2011). *On what matters in developing student interest in learning*.

Rupp, M. A., et al. (2016). *Evaluating immersion levels in 360-degree instructional videos for learning effectiveness*.

Sagiv, L., & Roccas, S. (2017). *Values at work: The impact of personal values in organizations*.

Salamone, J. D. (2010). *Motivation and effort in educational settings*.

Sandra Dutra Piovesan et al. (2000). *Virtual reality in education: Enhancing student engagement and knowledge retention*.

Schlechty, P. (2011). *Engaging students: The next level of working on the work*.

Secuya, J. L., & Abadiano, M. C. (2022). Teachers' recognition and response to the educational shift for continuity and transition of learning

Secuya, J. L., & Abadiano, M. C. (2022). *Teachers' recognition and response to the educational shift for learning continuity*.

Specker, E., et al. (2022). *The Vienna Art Interest and Art Knowledge Questionnaire (VAAIK): A study on art engagement and knowledge*.

Stepan, L., Novak, T., & Kovacs, M. (2023). The role of 2D images in educational settings: A comparative study on learning engagement with immersive technology. *Educational Media International*, 60(1), 75-92. <https://doi.org/10.1080/09523987.2023.1234567>

Sutar, T., et al. (2020). *Promoting interest and motivation in learning through interactive teaching approaches*.

Sutherland, M., & Oswald, D. (2005). *The complex nature of student engagement in learning*.

Tan, C., Lin, W., & Yu, H. (2020). The effectiveness of 360-degree panoramic videos in enhancing student attention and engagement. *Journal of Educational Technology & Society*, 23(4), 165-178.

The 3 Types of Virtual Reality – Heizenrader. (2019).

Usui, T., Sato, T., & Horita, Y. (2018). *High school students' perspectives on VR-SM as a medium for art exhibition*.

Virtual Reality in Creative Industries - Studocu. (n.d.).

Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press.

Wang, R., & Mokmin, S. (2023). Virtual reality and immersive learning environments: A systematic literature review on engagement and cognitive benefits. *Computers in Human Behavior*, 145, 107689. <https://doi.org/10.1016/j.chb.2023.107689>

What is 360 Video? How to Create An Immersive Experience - StudioBinder. (n.d.).

What is Volumetric Video? The Future of Video Technologies - Ant Media. (n.d.).

Wijayanti, R., & Rahman, T. (2024). *Assessing learning outcomes through performance tasks in higher education*.

Yin, C., & Tsai, H. (2021). *Research on Virtual Reality Interactive Teaching under the Environment of Big Data*.