

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY: APPLIED BUSINESS AND EDUCATION RESEARCH

2025, Vol. 6, No. 5, 2625 – 2632

<http://dx.doi.org/10.11594/ijmaber.06.05.36>

Research Article

Prevalence of Parasitic Contamination in Lettuce Vegetables Sold in Public Markets in Davao City

Dennisse Kirsten G. Jayma, Genelyn T. Enopia, Keen Aubrill P. Utida, Roel Nickelson P. Solano*

College of Health Sciences Education, University of Mindanao, 8000, Philippines

Article history:

Submission 03 April 2025

Revised 30 April 2025

Accepted 23 May 2025

*Corresponding author:

E-mail:

roel_solano@umindanao.edu.ph

ABSTRACT

This study aims to assess parasitic contamination in lettuce (*Lactuca sativa*) from selected public markets in Davao City, Philippines. Using a quantitative cross-sectional design, a total of 60 samples were collected from Agdao, Bankerohan, and Toril Public Markets. Each sample was placed in sterile plastic bags and sent to the University of Mindanao Medical Technology Laboratory for examination. Using the method of Hoffman, Pons, and Janer, the samples were washed with saline, filtered, and examined using direct wet mount technique after overnight sedimentation. Four samples were positive for parasites, corresponding to a total prevalence of 6.67 percent. The parasites identified were *Strongyloides stercoralis*, *Balantidium spp.*, filariform larva, and a trematode egg. It was also found that there is no significant difference in parasitic contamination among the three public markets. The presence of parasites in commonly consumed raw vegetables like lettuce poses a significant threat to consumer safety. Hence, the researchers recommend that local health agencies in the community strengthen educational initiatives targeting vendors, food handlers, consumers, and the general public on proper vegetable handling and safe preparation practices. It is recommended that further research be conducted on effective methods for washing lettuce and other vegetables before consumption to safeguard the public from possible parasitic infections and outbreaks in the future.

Keywords: Food-borne parasites, Food safety, Contamination, Lettuce, Public market

Introduction

Vegetables are considered excellent sources of essential vitamins and minerals and are widely recommended for maintaining a

healthy diet. Some vegetables are consumed raw or lightly cooked to preserve their flavor and protect heat-sensitive nutrients (Smith,

How to cite:

Jayma, D. K. G., Enopia, G. T., Utida, K. A. P., & Solano, R. N. P. (2025). Prevalence of Parasitic Contamination in Lettuce Vegetables Sold in Public Markets in Davao City. *International Journal of Multidisciplinary: Applied Business and Education Research*. 6(5), 2625 – 2632. doi: 10.11594/ijmaber.06.05.36

2020). Additionally, raw vegetable consumption has been associated with improved digestion, enhanced mental health, and a reduced risk of developing cardiovascular and other chronic illnesses (Brown & Garcia, 2018; Lee et al., 2019). However, despite these benefits, studies have shown a strong link between the raw consumption of vegetables and the increased transmission of foodborne parasites and other microorganisms (Santos, 2021).

In the Philippines, vegetables make up a significant portion of the Filipino diet, and eating raw vegetables is a common practice. Lettuce (*Lactuca sativa*), a popular leafy vegetable often used in salads, is widely consumed due to its high nutritional value and ease of preparation. However, recent studies have reported a high prevalence of intestinal parasites in vegetables, raising increasing concerns about food safety (Cruz et al., 2020–2023).

Globally, intestinal parasitic infections are common but are especially prevalent in tropical and subtropical regions. Despite the interventions of public health agencies to control parasitic infections (Department of Health, 2019), it has been reported that 81 provinces in the Philippines remain endemic to at least one neglected tropical disease caused by parasites (World Health Organization [WHO], 2020). In the Davao Region, a 2011 study in Davao del Norte found that 34.1% of schoolchildren in indigenous communities were infected with at least one soil-transmitted helminth (STH), and 5.9% had heavy-intensity infections (Del Rosario et al., 2011). Due to the COVID-19 pandemic, infection control efforts targeting neglected tropical diseases were suspended, increasing the threat posed by parasitic infections (Gomez & Reyes, 2021).

Although several international studies have investigated parasitic contamination in fruits and vegetables, there is limited literature available from the Philippines, particularly in Davao City. Thus, there is a need to update local data on parasitic contamination in vegetables such as lettuce, especially in light of the COVID-19 pandemic, which has led to a diminished focus on intestinal parasitic infections.

Materials and Methods

Sampling

Twenty samples were purchased in three public markets, namely Agdao, Bankerohan, and Toril public markets. The samples were randomly selected regardless of size, appearance, or variety. Each sample was placed separately in sterile plastic bags and sent to the University of Mindanao Microbiology Laboratory for examination.

Processing and Analysis of Samples

Each lettuce sample was examined macroscopically for the presence of parasitic worms, including adult nematodes, cestode segments, and other ectoparasites. The samples were analyzed using the Hoffman, Pons, and Janer technique, commonly referred to as the spontaneous sedimentation method. This technique, as utilized in the study by Célio et al. (2014), demonstrated a high recovery rate of parasites in lettuce samples, with a reported recovery of 70%. For this procedure, each sample was fragmented and washed with 100 mL of physiological saline solution (0.9% NaCl) in a separate container to dislodge any parasitic ova, cysts, or larvae. The solution was continuously agitated for 30 minutes. Subsequently, the leaves were removed, and the wash water was filtered through sterile gauze. The resulting filtrate was placed in a sterile container and allowed to sediment overnight. The sediment was then gently resuspended, and 0.05 mL of the solution was mounted on four microscope slides—two for direct examination and two stained with Lugol's iodine. All slides were observed under 10x and 40x objectives, and parasite identification was confirmed by licensed medical technologists.

Statistical Analysis

The researchers used a one-way ANOVA test as a statistical tool to determine if there is a significant difference in the prevalence of the parasitic contamination of lettuce vegetables collected from the three selected markets in Davao City. A p-value of less than 0.050 was deemed significant.

Inclusion and Exclusion Criteria

Lettuce (*Lactuca sativa*) vegetables were purchased from three public markets in Davao City: Bankerohan Public Market (District 1), Agdao Public Market (District 2), and Toril Public Market (District 3). The research location was chosen because these three public markets are central and open-air public markets where vegetables are purchased directly from farmers or producers. The lettuce samples utilized in this investigation were collected regardless of size, variety, cultivation method, vendor, suppliers, or other criteria that may contribute to parasitic contamination. The study did not include lettuce vegetables sold at supermarkets, stalls, and marketplaces other than Agdao, Bankerohan, and Toril public markets.

Results and Discussion

In this study, four out of 60 lettuce vegetables tested positive for intestinal parasites – two from Agdao and two from Toril Public Market. Meanwhile, all samples obtained from Bankerohan were negative for parasitic contamination. The parasites identified were *Strongyloides stercoralis*, *Balantidium spp.*, filariform larvae, and a trematode egg. The study's findings revealed no significant difference in the prevalence of parasitic contamination between the three public markets. Table 1 shows the frequency of detected parasites per market.

Public Markets in Davao City	No. of Samples (n=60)	Frequency of Positive Samples
Agdao	20	2 (10%)
Bankerohan	20	0
Toril	20	2 (10%)

Notably, the lettuce samples obtained from Agdao and Toril public markets were pre-washed with water at the time of purchase. In contrast, samples from the Bankerohan market were unwashed but tested negative for parasitic contamination. Monterde et al. (2020) reported that some vendors in Davao City reuse water for washing vegetables due to the large volume of water required for proper cleaning. In contrast, a study conducted in Southern Ethiopia indicated that unwashed vegetables were 3.6 times more likely to be contaminated compared to those washed before display (Abdissa et al., 2019). Similarly, a study conducted in Laguna, Philippines, revealed that using water from mountain springs can lead to contamination of vegetables and soil with animal-borne pathogens, while tap water supplies were found to be safer and free of waterborne parasites (Delos Reyes et al., 2018). These findings highlight the critical importance of washing vegetables in public markets, while also emphasizing that the quality of water used is a significant factor in reducing the risk of parasitic contamination. The parasites identified in lettuce vegetable samples collected from three

public markets in Davao City are listed in Table 2. *Strongyloides stercoralis* larvae and *Balantidium spp.* were recovered from lettuce samples obtained from Agdao Public Market. One trematode egg and one filariform larva were also identified from samples in Toril Public Market. Because the filariform larvae of *S. stercoralis* and hookworms have similar morphologies, it is difficult to differentiate them using the detection method.

Consistent with the findings of this study, numerous international investigations have documented high levels of *Strongyloides stercoralis* contamination in lettuce and other vegetables such as cabbage, spinach, carrots, watercress, and spring onions (Célio et al., 2015; Santos et al., 2018). *S. stercoralis* is transmitted via contaminated soil and possesses a complex life cycle that enables the parasite to adopt a free-living form. This adaptability may contribute to the heightened risk of contamination in soil-grown produce. Additionally, *Balantidium spp.* was detected in the current analysis. This protozoan parasite is primarily transmitted through the fecal-oral route, with pigs and other animals serving as its main reservoirs.

Elevated levels of contamination, as reported in earlier studies (Santos et al., 2018; Yilma & Malone, 1998; Célio et al., 2015), may be

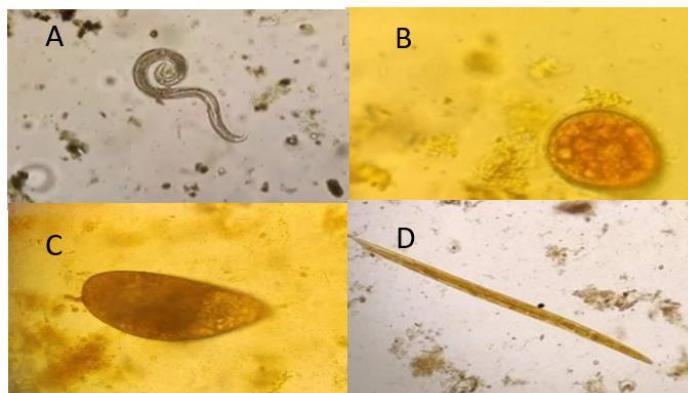

attributed to the use of pig or human fecal-contaminated water for irrigating vegetables.

Table 2. Parasites Identified from Lettuce samples

Parasites Identified	Public Markets			TOTAL
	Agdao	Bankerohan	Toril	
Balantidium spp.	1	0	0	1
Filariform larva	0	0	1	1
Trematode egg	0	0	1	1
Strongyloides stercoralis	1	0	0	1
Negative	18	20	18	56
Total	20	20	20	20

A trematode egg was detected in one of the lettuce samples collected from Toril Public Market. However, due to limitations in the detection method employed in this study, the researchers were unable to accurately identify the specific species of the trematode. Nonetheless, previous studies on vegetable

contamination have frequently reported the presence of *Fasciola* spp. in lettuce and other produce (Célio et al., 2015; Santos et al., 2018; Yilma & Malone, 1998). *Fasciola* spp. is primarily transmitted through contaminated water sources and is commonly associated with aquatic vegetation.

A. *Strongyloides stercoralis*; B. *Balantidium coli*; C. Trematode egg; D. Filariform larva

Figure 1. Parasites Identified from Lettuce Samples Collected from Selected Public Markets in Davao City

Table 3 shows the total prevalence rate of parasites detected from *L. sativa* samples taken in three public marketplaces in Davao City. Two samples tested positive for parasite contamination in Agdao and Toril Public Markets, with a

prevalence of 3.3 percent in each market. The cumulative prevalence of parasite infestation in the sixty lettuce samples examined is 6.7 percent.

Table 3. Prevalence of Parasitic Contamination in Lettuce

Public Markets	Parasitic Contamination		TOTAL
	Positive	Negative	
Agdao Public Market	Count	2	20
	% of Total	3.3%	30.0%

Public Markets	Parasitic Contamination		TOTAL
	Positive	Negative	
Bankerohan Public Market	Count	0	20
	% of Total	0.0%	33.3%
Toril Public Market	Count	2	20
	% of Total	3.3%	30.0%
TOTAL	Count	4	60
	% of Total	6.7%	100.0%

Table 4. Summary of ANOVA for Prevalence of Contamination between Markets

ANOVA						
	Sum of Squares	df	Mean Square	F	p value	Conclusion
Between Groups	.133	2	.067	1.056	.355	No significant Difference
Within Groups	3.600	57	.063			
Total	3.733	59				

Table 4 The p-value obtained in this study was greater than 0.05, indicating that there is no statistically significant difference in the prevalence rate of parasitic contamination among the markets examined. Compared to earlier research on parasitic contamination of lettuce (Célio et al., 2015; Monterde et al., 2020; see also references 4–25), the overall prevalence identified in this investigation was relatively low. Several factors may have contributed to this finding. One possible explanation is the sanitary conditions of the markets and geographic variation. Another factor may be the differing food-handling practices across countries. In this study, the lettuce samples had been washed several times prior to display to enhance freshness, which may have influenced the presence or absence of parasites. However, it remains inconclusive whether washing effectively reduces parasitic contamination, as this same practice may have led to the detection of parasites in samples from Agdao and Toril Public Markets.

Additionally, differences in laboratory procedures could have contributed to the lower prevalence observed. For instance, a study by Célio et al. (2015) used a double saline washing method to improve parasite recovery. In contrast, the current study utilized only a single saline wash. Furthermore, unlike previous research, this study did not employ the Modified Ziehl–Neelsen staining technique, which is essential for identifying coccidian oocysts (Célio et al., 2015). This omission may explain the

absence of coccidian oocysts in the samples examined.

Parasitic contamination does not appear to be solely dependent on the market location; rather, it may occur at various stages, including production, collection, transportation, preparation, or processing. This observation contrasts with the findings of Célio et al. (2015), who reported significant differences in parasitic contamination of lettuce samples collected from Maxixe City, Mozambique. To reduce the incidence of contamination in leafy green vegetables and mitigate the associated risk of parasitic infections among consumers, effective preventive measures must be implemented.

Conclusion

The findings of this study revealed that the total prevalence of parasitic contamination of lettuce vegetables obtained from Agdao, Bankerohan, and Toril Public Markets is 6.67 percent. Parasitic contamination of lettuce vegetables may have occurred during harvesting, transportation, or may be due to the handling practices of vendors. The prevalence of these parasites in lettuce, a commonly consumed raw vegetable, poses a high risk to public health and consumers' safety. Because of this, the researchers conclude that there is an urgent need to implement simple and scalable protocols to safeguard the public from parasitic infections. Hence, the researchers recommend that health agencies in the community improve efforts in

educating vendors, food handlers, and consumers. It is recommended that further research be conducted on effective methods for washing lettuce and other vegetables before consumption to prevent possible parasitic infections and outbreaks in the future.

Acknowledgement

We would like to give our praises and thanks to the Almighty for His provision and guidance throughout the completion of this study. We express our sincere gratitude to Dean Ofelia C. Lariego, RN, MAN, for permitting us to conduct this study. We are forever grateful to Mr. Roel Nickelson Solano, RMT, MSMT, Maria Kristina Y. Navarro, RMT, MSMT, and Gamela Kate N. Mostero, RN, MAN, for their guidance and support in our research. Additionally, we thank our validator, Mr. Juvren Romvic Batalon, RMT, and our statistician, Ms. Rosyl Matinao, for sharing their expertise in the validation and analysis of our research data. We also wish to thank our families and friends, whose support and assistance helped us accomplish our research.

References

Lee, S., Choi, Y., Jeong, H. S., Lee, J., & Sung, J. (2017). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. *Food Science and Biotechnology*, 27(2), 333–342. <https://doi.org/10.1007/s10068-017-0281-1>

Ahmed, A., Sayed, F., Galal, L., Ismail, T., & Gaber, M. (2020). Detection of parasites contaminating raw consumable vegetables in Assiut City, Assiut Governorate, Egypt. *Journal of the Egyptian Society of Parasitology*, 50(3), 557–564. <https://doi.org/10.21608/jesp.2020.131086>

Aiwny Cássia, J. A., Anelise Andrade, d. S., & Marco Antônio Andrade, d. S. (2020). Prevalence of enteroparasites in vegetables marketed in the city of Jaguaré, Espírito Santo, Brazil. *Revista de Salud Pública*, 22(4), 1–6. <https://doi.org/10.15446/rsap.v22n4.77097>

Al Nahhas, S., & Aboualchamat, G. (2020). Investigation of parasitic contamination of salad vegetables sold by street vendors in city markets in Damascus, Syria. *Food and Waterborne Parasitology*, 21, e00090. <https://doi.org/10.1016/j.faw-par.2020.e00090>

Alemu, G., Nega, M., & Alemu, M. (2020). Parasitic contamination of fruits and vegetables collected from local markets of Bahir Dar City, Northwest Ethiopia. *Research and Reports in Tropical Medicine*, 11, 17–25. <https://doi.org/10.2147/RRTM.S244737>

Alshareef, S. A., Abdulsalam, A., Alghanaei, R. A., Salim, E., & Chibani, M. (2019). Parasitic contamination of raw vegetables sampled from different farm locations in Brack Al-Shati, Libya. *Journal of Pure & Applied Sciences*, 18(4). <https://doi.org/10.51984/jopas.v18i4.439>

Anand, S. S., Hawkes, C., de Souza, R. J., et al. (2015). Food consumption and its impact on cardiovascular disease: Importance of solutions focused on the globalized food system: A report from the workshop convened by the World Heart Federation. *Journal of the American College of Cardiology*, 66(14), 1590–1614. <https://doi.org/10.1016/j.jacc.2015.07.050>

Bekele, F., Tefera, T., Biresaw, G., & Yohannes, T. (2017). Parasitic contamination of raw vegetables and fruits collected from selected local markets in Arba Minch town, Southern Ethiopia. *Infectious Diseases of Poverty*, 6(1), 19. <https://doi.org/10.1186/s40249-016-0226-6>

Belizaro, V. Y., Jr., Totañes, F. I., de Leon, W. U., Lumampao, Y. F., & Ciro, R. N. (2011). Soil-transmitted helminth and other intestinal parasitic infections among school children in indigenous people communities in Davao del Norte, Philippines. *Acta Tropica*, 120(Suppl 1), S12–S18. <https://doi.org/10.1016/j.actatropica.2011.02.010>

Berrouch, S., Escotte-Binet, S., Amraouza, Y., et al. (2020). *Cryptosporidium spp., Giardia*

duodenalis and *Toxoplasma gondii* detection in fresh vegetables consumed in Marrakech, Morocco. *African Health Sciences*, 20(4), 1669–1678. <https://doi.org/10.4314/ahs.v20i4.19>

Brooker, S. J., Ziumbe, K., Negussu, N., Crowley, S., & Hammami, M. (2021). Neglected tropical disease control in a world with COVID-19: An opportunity and a necessity for innovation. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 115(3), 205–207. <https://doi.org/10.1093/trstmh/traa157>

Célio, A., Guido, N., Izaidino, M., Adérito, N., Yazido, M., & Jorge, M. (2021). Parasitological assessment of lettuce quality in the Maxixe City markets, Mozambique. *Journal of Bacteriology & Parasitology*, S8, 002. <https://doi.org/10.35248/2155-9597.21.s8.002>

de Carvalho Souza Machado, T., Cristina Apolinario Borges, C., Coelho Ribeiro Mendonca, F., & Cristina Euzebio Pereira Dias de Oliveira, B. (2020). Parasitological evaluation of lettuce served in school meals at a federal state school in Rio de Janeiro, Brazil. *Revista de Patologia Tropical*, 49(1), 33–44. <https://doi.org/10.5216/rpt.v49i1.61879>

El Bakri, A., Hussein, N. M., Ibrahim, Z. A., Hasan, H., & AbuOdeh, R. (2020). Intestinal parasite detection in assorted vegetables in the United Arab Emirates. *Oman Medical Journal*, 35(3), e128. <https://doi.org/10.5001/omj.2020.46>

Hajare, S. T., Gobena, R. K., Chauhan, N. M., & Erniso, F. (2021). Prevalence of intestinal parasite infections and their associated factors among food handlers working in selected catering establishments from Bule Hora, Ethiopia. *BioMed Research International*, 2021, 6669742. <https://doi.org/10.1155/2021/6669742>

Isazadeh, M., Mirzaii-Dizgah, I., Shaddel, M., & Homayouni, M. M. (2020). The prevalence of parasitic contamination of fresh vegetables in Tehran, Iran. *Turkish Journal of Parasitology*, 44(3), 143–148. <https://doi.org/10.4274/tpd.galenos.2020.6469>

Kassaw, M. W., Abebe, A. M., Tlaye, K. G., Zemariam, A. B., & Abate, B. B. (2019). Prevalence and risk factors of intestinal parasitic infestations among preschool children in Sekota town, Waghimra zone, Ethiopia. *BMC Pediatrics*, 19(1), 437. <https://doi.org/10.1186/s12887-019-1774-2>

Kudah, C., Sovoe, S., & Baiden, F. (2018). Parasitic contamination of commonly consumed vegetables in two markets in Ghana. *Ghana Medical Journal*, 52(2), 88–93. <https://doi.org/10.4314/gmj.v52i2.5>

Leonardo, L., Hernandez, L., Magturo, T. C., et al. (2020). Current status of neglected tropical diseases (NTDs) in the Philippines. *Acta Tropica*, 203, 105284. <https://doi.org/10.1016/j.actatropica.2019.105284>

Li, J., Wang, Z., Karim, R. M., & Zhang, L. (2020). Detection of human intestinal protozoan parasites in vegetables and fruits: A review. *Parasites & Vectors*, 13, 380. <https://doi.org/10.1186/s13071-020-04255-3>

Mirzaei, Y., Mohammadi, C., Ahmad, S. F., Hamad, P. M., & Samiei, A. (2021). Prevalence of intestinal parasites in raw vegetables consumed in Soran city, Kurdistan Region, Iraq. *Annals of Parasitology*, 67(2), 275–279. <https://doi.org/10.17420/ap6702.339>

Monterde, V., & Ekman, J. (2021). Food handling practices for fresh-cut vegetables at wet markets and supermarkets in Davao City, Philippines. *BANWA Series B*. <http://ojs.upmin.edu.ph/index.php/banwa-b/article/view/493>

Muchanga, I., Alfredo, C., Jorge, M., Yazido, M. M., & Nchowela, G. N. (2021). Parasitological assessment of lettuce quality in the Maxixe City markets, Mozambique. [Unpublished Manuscript].

Obebe, O. O., Aluko, O. O., Falohun, O. O., Akinlabi, K. B., & Onyiche, T. E. (2020). Parasitic contamination and public health risk of commonly consumed vegetables in Ibadan-Nigeria. *Pan African Medical Journal*, 36, 126. <https://doi.org/10.11604/pamj.2020.36.126.19364>

Ordoñez, K. N., Lim, Y. A. L., Goh, X. T., & Paller, V. G. V. (2021). Parasite contamination of freshly harvested vegetables from selected organic and conventional farms in the Philippines. *[Journal article]*. <https://www.ukdr.uplb.edu.ph/journal-articles/977>

Paller, V. G. V., Macalinao-Ramirez, C. A., & Bandal, M. Z. (2022). Environmental contamination with parasites in selected rural farms in the Philippines: Impacts of farming practices on leafy greens food safety. *Parasitology*, 149(4), 482–489. <https://doi.org/10.1017/S0031182021002094>

Punsawad, C., Phasuk, N., Thongtup, K., et al. (2019). Prevalence of parasitic contamination of raw vegetables in Nakhon Si Thammarat province, southern Thailand. *BMC Public Health*, 19, 34. <https://doi.org/10.1186/s12889-018-6358-9>

Rodrigues, A. C., Silva, M. D., Pereira, R. Â., & Pinto, L. C. (2020). Prevalence of contamination by intestinal parasites in vegetables (*Lactuca sativa* L. and *Coriandrum sativum* L.) sold in markets in Belém, northern Brazil. *Journal of the Science of Food and Agriculture*, 100(7), 2859–2865. <https://doi.org/10.1002/jsfa.10265>

Ross, A. G., Papier, K., Luceres-Catubig, R., Chau, T. N., Inobaya, M. T., & Ng, S. K. (2017). Poverty, dietary intake, intestinal parasites, and nutritional status among school-age children in the rural Philippines. *Tropical Medicine and Infectious Disease*, 2(4), 49. <https://doi.org/10.3390/tropicalmed2040049>

Sebastian, R. S., Wilkinson Enns, C., Goldman, J. D., Hoy, M. K., & Moshfegh, A. J. (2019). Findings from What We Eat in America, National Health and Nutrition Examination Survey 2011–2014 support salad consumption as an effective strategy for improving adherence to dietary recommendations. *Public Health Nutrition*, 22(6), 976–987. <https://doi.org/10.1017/S136898001803695>

Vazhavandal, G., Ajitha, S., Uma, A., & Prabhusraran, N. (2020). Study on parasitic contamination of common edible fruits and vegetables sold in local markets of Tiruchirappalli, South India. *Indian Journal of Microbiology Research*, 7(4), 362–368. <https://doi.org/10.18231/ijmr.2020.065>

Vizon, K. C. C., Battad, Z. G., & Castillo, D. S. C. (2019). Contamination of food-borne parasites from green-leafy vegetables sold in public markets of San Jose City, Nueva Ecija, Philippines. *Journal of Parasitic Diseases*, 43(4), 651–657. <https://doi.org/10.1007/s12639-019-01144-0>