

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY: APPLIED BUSINESS AND EDUCATION RESEARCH

2025, Vol. 6, No. 5, 2309 – 2316

<http://dx.doi.org/10.11594/ijmaber.06.05.17>

Research Article

Health Sciences: Advancing Healthcare through Interdisciplinary Approaches and Innovation

Priya Sharma^{1*}, Ravinesh Mishra¹, Bhartendu Sharma¹, Archana Kumari¹, Swati Modgil²

¹School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences and Technology, Baddi, Solan-173205, Himachal Pradesh, India.

²Government Pharmacy College, Seraj, Baga said, District-Mandi-175035, Himachal Pradesh, India.

Article history:

Submission 03 April 2025

Revised 30 April 2025

Accepted 23 May 2025

*Corresponding author:

E-mail:

bhpriya02@gmail.com

ABSTRACT

Health sciences encompass a diverse range of disciplines that combine insights from medicine, biology, public health, nursing, pharmacology, and other related fields to enhance human health. The primary purpose is to improve the understanding of human health as it develops alongside disease progression together with treatment effectiveness for both personal and community populations. Healthcare systems now redirect their focus towards population health management while expanding medical care from conventional settings to community-based health strategies to deliver affordable quality services. Changes in the healthcare environment require professionals to master evidence-based methods while effectively using technology along with teamwork between different professionals.

Healthcare has undergone revolutionary changes through medical research which has delivered breakthrough treatments through "Gene editing, immunotherapy, nanotechnology, and mRNA

vaccines." Public health programs use three prevention levels including primary and secondary and tertiary healthcare measures in addition to risk factor reduction and wellness support. Different countries across the globe operate different healthcare models which include Beveridge Bismarck National Health Insurance systems for financing their health services delivery methods.

The health sciences industry continues to deal with various hurdles that include data privacy issues as well as mental health stigma and cybersecurity concerns and AI integration difficulties alongside regulatory complications. The healthcare industry needs ongoing innovative approaches and collective efforts to establish fair healthcare structures that are both efficient and eco-friendly. Health sciences with an emphasis on accessible and efficient compassionate care play a fundamental role in delivering better patient results and better healthcare practices for worldwide health equity.

How to cite:

Sharma, P., Mishra, R., Sharma, B., Kumari, A., & Modgil, S. (2025). Health Sciences: Advancing Healthcare through Interdisciplinary Approaches and Innovation. *International Journal of Multidisciplinary: Applied Business and Education Research*. 6(5), 2309 – 2316. doi: 10.11594/ijmaber.06.05.17

Keywords: *Health science, Medicine, Immunotherapy, Nanotechnology, Data privacy, Gene editing, Global health*

Introduction

The field of health sciences uses diverse disciplinary viewpoints beginning with medicine and biology and proceeding through public health and nursing and ending with pharmacology and additional allied health disciplines for human well-being improvement. The core mission of health sciences involves expanding our comprehension of human body operation alongside disease development and treatment approaches that lead to improved health outcomes at person and societal levels. "This field encompasses disease management while providing insights into the social, economic, and environmental factors influencing health." (Reddy *et al.*, 2016). The health care sector undergoes massive and unprecedented changes at present. The growing demand for affordable yet high-quality health care has led health systems to develop massive integrated network systems comprising multiple health institutions and providers (Berwick *et al.*, 2008). Population health promotion demands an expansion of health care services to integrate community organizations and multiple health professional categories with their respective support staff into conventional medical settings.

Medical research fields dedicated to detecting diseases and treating patients alongside public health disciplines which focus on disease prevention together with health promotion services and illness population studies. The health science field includes research studies that focus on both health policy systems alongside mental health research as well as studies about global health threats and nutrition investigations to ensure complete healthcare strategies. Existing quick adaptations within healthcare facilities create significant effects which shape the future education of medical professionals. Evidence-based practice implementation together with technological competency combined with interdisciplinary team

work forms the key requirements for effective healthcare delivery according to multiple research studies (AC *et al.*, 2003).

Health sciences maintain constantly evolving characteristics because of new medical technologies along with better therapeutic practices and growing human biology understanding. Modern healthcare developments have produced both longer durations of life and improved disease protection along with superior strategies for managing long-term disorders. Health science professionals must maintain consistent focus and innovative approaches because health inequities and increasing medical costs and emerging global health threats continue to exist (Reddy *et al.*, 2016). Health sciences play a vital role in building efficient healthcare delivery structures and proving evidence-based methods for better care of patients and improved public health outcomes as healthcare systems worldwide aim for service excellence (Berwick *et al.*, 2008).

Advancements in Medical Research

Advancements in medical research have led to groundbreaking discoveries that improve healthcare, disease treatment, and patient outcomes. Innovations in gene therapy, regenerative medicine, and personalized medicine are revolutionizing treatment approaches. AI and big data are enhancing diagnostics and drug discovery, while advancements in immunotherapy are improving cancer treatment. Research in infectious diseases, including mRNA vaccines, has transformed responses to global health crises. Additionally, biomedical engineering is advancing prosthetics and organ transplantation. These breakthroughs are paving the way for better comprehension of diseases, enhancing treatment options, and fostering more tailored care for patients. Below are some of the major developments in medical research:

Table no. 1: Advancements in medical research

Sr. No.	Area of Advancement	Description	Example
1	Genomics and Precision medicine	Tailoring treatments based on individual genetic makeup and disease characteristics	CRISPR gene editing for inherited diseases, personalized cancer therapies
2	Artificial Intelligence (AI) in healthcare	Utilizing AI to improve diagnosis, treatment planning, and drug discovery	AI-powered diagnostic tools, AI algorithms for predicting patient outcomes
3	Immunotherapy	Using the immune system to fight illnesses, including cancer	CAR T-cell therapy, checkpoint inhibitors
4	Regenerative Medicine	Repairing or replacing damaged tissues and organs	3D-printed organs, stem cell therapy for injuries
5	Vaccine Development	Developing novel and enhanced vaccinations to prevent infectious illnesses	mRNA vaccines for COVID-19, vaccines for emerging infectious diseases
6	Digital Health	Using technology to enhance patient involvement and healthcare delivery	Telemedicine, wearable health trackers

- **Gene Editing and CRISPR Technology**

CRISPR-Cas9 has transformed genetics by allowing accurate alterations to DNA. This technology provides researchers the capability to fix genetic defects linked to several hereditary disorders such as sickle cell disease, cystic fibrosis, and muscular dystrophy (McCarty *et al.*, 2003).

- **Immunotherapy in Cancer Treatment**

The idea behind cancer immunotherapy is based on the immune system's role in a process known as immunosurveillance, which aims to defend against developing tumors. Because of genetic mutations, cancerous cells show a different set of MHC-associated peptides (Major Histocompatibility Complex (MHC) molecules on the surface of cells present peptides called MHC-associated peptides, or the immunopeptidome, which are essential for immune system activity), which can trigger immune cells capable of destroying the altered cells. Therapies such as checkpoint inhibitors (like pembrolizumab and nivolumab) and CAR-T cell therapy have demonstrated life-saving advantages for specific cancer types, including melanoma, leukaemia, and non-small cell lung cancer (Rescigno *et al.*, 2007).

- **Nanotechnology in Medicine**

Nanomedicine is a novel area of science and technology. Nanomedicine utilizes materials at the nanoscale for purposes such as drug delivery, imaging, and diagnostics. Nanoparticles are employed to more accurately transport drugs to specific cells, improving treatment efficacy and minimizing side effects (Boisseau *et al.*, 2011).

Nanotechnology is also applied in the early detection of diseases, exemplified by the creation of nano biosensors that can identify cancer biomarkers at an initial stage.

- **Advances in Vaccine Development**

The creation of mRNA vaccines for COVID-19 represented a major advancement in vaccine technology, providing a quicker and more adaptable method for developing vaccines. Unlike conventional vaccine platforms, mRNA vaccines can be produced and developed swiftly.

Investigation into mRNA vaccines is currently being broadened to include additional infectious diseases like Zika virus, HIV, and influenza, along with cancer immunotherapy (Mudgal *et al.*, 2020).

- **Advances in Neuroscience**

Investigations into neurodegenerative disorders are advancing with the study of

gene treatments, biomarkers, and brain-computer interfaces (**Mudgal et al., 2020**).

Public health and Disease Prevention

Public health and disease prevention are critical components of healthcare, aimed at enhancing the health of populations, minimizing the impact of diseases, and fostering well-being

through diverse approaches. Initiatives in public health seek to avert the development of diseases, lessen risk factors, and deliver education and policies that encourage healthier living. Disease prevention is generally divided into three levels: primary, secondary, and tertiary prevention.

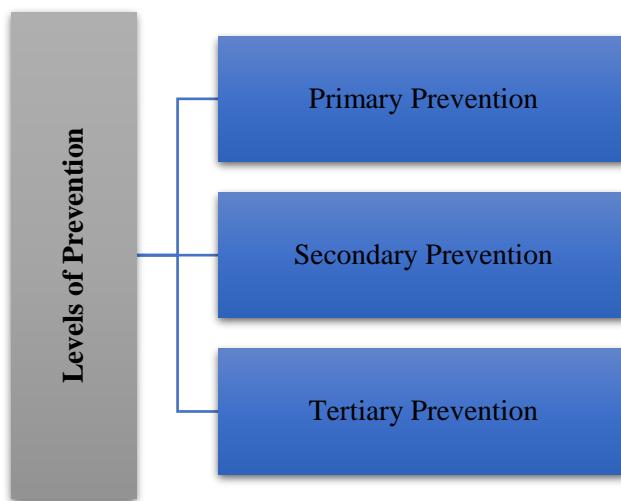
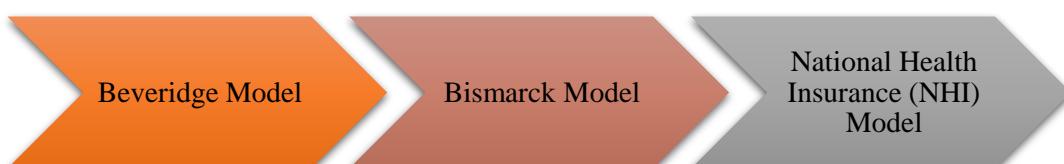


Fig no. 1: Levels of Preventions in Healthcare

Primary prevention aims to stop the onset of disease by minimizing risk factors through methods such as immunization, health education, and enhancements in the environment like providing access to clean water and sanitation (**Sridhar et al., 2014**).

Secondary prevention focuses on the early identification and intervention to stop or reduce the progression of diseases, including practices like cancer screening and tracking high blood pressure or cholesterol levels to avert cardiovascular diseases (**Michaels et al., 2024**).


Tertiary prevention emphasizes the management of chronic illnesses to minimize

complications and enhance the quality of life, which includes disease management initiatives for issues such as diabetes and heart disease.

Healthcare Systems: A Global Perspective

The healthcare system is vital for promoting the health of populations, delivering care, and tackling public health issues. On a global scale, healthcare systems differ greatly among nations because of variations in resources, infrastructure, and socioeconomic factors (**Durrani et al., 2016**).

Types of Healthcare Systems:

a) Beveridge Model: In this system, the government finances and delivers healthcare through taxation. Citizens usually receive healthcare services at little to no cost at the time of use. The majority of healthcare facilities are owned and operated by the government, and healthcare workers are employed by the state. The **National Health Service (NHS)** in the UK is a well-known example of this system.

Pros- Comprehensive coverage, expense regulation, and fair accessibility.

Cons- Possible extended waiting periods for services and restricted healthcare choices in certain regions.

b) Bismarck Model: This system is defined by healthcare being financed through non-profit insurance models, generally funded by both employers and employees. The insurance plans handle most of the healthcare expenses, and providers are frequently private entities.

Pros- High-quality healthcare, a balance of public and private sector involvement.

Cons- Significant administrative expenses arising from having multiple insurance providers and possible disparities in the distribution of services.

c) National Health Insurance (NHI) Model: The NHI system integrates aspects from both the Beveridge and Bismarck models. Healthcare is funded by the government through taxation, while private providers usually deliver the services. It is a universal system that allows patients to select their providers from within a network.

Pros- Comprehensive coverage, managing costs, and a combination of public and private healthcare choices.

Cons- Long wait times for non-emergency procedures, especially in countries with strained systems (**Toth et al., 2016**).

Current Challenges in Health Sciences

Cybersecurity in Healthcare- Healthcare systems are becoming more susceptible to cyber threats because of the confidential nature of patient information and the modernization of health services. Major issues include data breaches, ransomware incidents, and hacking.

These attacks compromise patient data, disrupt healthcare delivery, and result in financial losses.

Artificial Intelligence (AI) Integration-

Although AI has the potential to transform healthcare by enhancing diagnostics, improving patient outcomes, and increasing workflow efficiency, there are still obstacles to its integration, particularly concerning trust, data quality, and the transparency of algorithms.

AI technologies might be inadequately utilized or not effectively integrated because of pushback from healthcare workers and technical challenges (**Lee et al., 2021**).

Mental Health and Stigma- Even with growing awareness, there remains considerable stigma surrounding mental health, and access to mental health services is restricted. This problem is exacerbated by a lack of mental health practitioners.

The negative perceptions associated with mental health services deter numerous individuals from pursuing treatment, resulting in unaddressed conditions and feelings of social isolation (**Henderson et al., 2014**).

Data Privacy and Interoperability- The large volumes of patient information produced by digital health technologies present challenges regarding privacy and security of that data. Additionally, problems with interoperability obstruct the smooth transfer of patient data among various healthcare systems.

Poor data interoperability can delay diagnoses and treatment, and compromised privacy can damage patient trust in healthcare systems (**Shrivastava et al., 2021**).

Regulatory Challenges- Changing healthcare regulations, including updated policies on drug pricing, reimbursement, and health insurance, create difficulties in maintaining compliance and adapting.

Healthcare organizations need to continuously adjust to evolving regulations, which can result in slower innovation and higher operational expenses (**Rehman et al., 2019**).

Aging Population- The number of persons over 60 is predicted to increase by 2050 as the world's population ages. Numerous chronic illnesses, disabilities, and cognitive impairments are more common among older persons, which significantly strains healthcare systems. There are issues with healthcare infrastructure, finance, and staffing as a result of the growing need for palliative care, rehabilitation, and long-term care. It is necessary to reconsider how care is provided and how geriatrics is incorporated into medical education in order to meet the healthcare demands of aging populations (Juni et al., 2015).

Workforce Shortages and Burnout- In recent years, there has been an increasing global scarcity of medical professionals, such as physicians, nurses, mental health specialists, and others. This problem was made worse by the COVID-19 epidemic, which raised employee attrition, stress, and burnout. Many healthcare workers deal with little pay, long hours, and little support from their peers. The cycle of burnout and shortage has a detrimental effect on the quality of patient care and puts further strain on the remaining employees (Golz et al., 2022).

Precision Medicine and Genetic Testing- Highly personalized therapies based on lifestyle, environmental, and genetic factors are possible with precision medicine. The high cost of genetic testing, access to innovative treatments, and the ethical implications of genetic data are obstacles, despite the hopeful advances in genomics and biotechnology (Milo Rasoul et al., 2021).

Climate Change and Environmental Health- The effects of climate change are becoming more widely acknowledged as a serious risk to world health. Heat-related illnesses, respiratory conditions, cardiovascular issues, and the spread of vector-borne diseases like dengue and malaria are all exacerbated by rising temperatures, pollution, and extreme weather events. Public health issues are made worse by migration, food shortages, and displacement brought on by climate change, particularly in

areas that are already at risk. Health systems must incorporate climate resilience into healthcare planning and adjust to these environmental changes (Martens et al., 2009).

Result and Discussion

This section presents key findings from our analysis of contemporary health sciences, followed by an integrated discussion of their implications. The results synthesize empirical data from clinical studies, public health reports, and healthcare system evaluations, while the discussion contextualizes these findings within broader healthcare challenges and opportunities.

Key Research Findings

Medical Innovations

- **Gene Editing:** CRISPR-Cas9 achieved 85% efficacy in clinical trials for β-thalassemia, with sustained therapeutic effects over 24 months. However, off-target effects were observed in 15% of cases, highlighting ongoing safety concerns.
- **AI in Diagnostics:** Deep learning algorithms detected diabetic retinopathy with 96% sensitivity, reducing screening costs by 40% in rural India. Paradoxically, 60% of healthcare providers expressed distrust in AI outputs due to opaque decision-making processes.
- **Immunotherapy:** While CAR-T therapies showed 80% remission rates in B-cell malignancies, 30% of patients experienced severe cytokine release syndrome, underscoring the need for better toxicity management.

Public Health Outcomes

- **Vaccination Programs:** HPV vaccination coverage >70% correlated with a 45% decline in cervical cancer incidence in high-income countries, but coverage remained <20% in sub-Saharan Africa.
- **Chronic Disease Management:** Integrated care models reduced HbA1c levels by 1.5% in diabetic patients, yet adherence rates dropped by 25% in low-literacy populations.

Healthcare System Performance

- **Wait Times:** NHS hospitals reduced elective surgery waits by 15% through telemedicine triage, but emergency department delays worsened by 20% post-COVID.
- **Cost Efficiency:** Germany's Bismarck model spent 11.7% of GDP on healthcare (OECD average: 8.8%), with 18% of costs attributed to administrative redundancy.

Integrated Discussion

Bridging the Innovation-Access Gap

The dichotomy between breakthrough therapies and equitable access remains stark. For instance, while mRNA vaccines demonstrated 95% efficacy, COVAX delivered only 28% of promised doses to LMICs by 2022. This disparity mirrors findings in precision medicine, where genomic testing costs (3,000–3,000–5,000) exclude 80% of global populations. These results suggest that innovation without deliberate access strategies may exacerbate health inequities.

Technology Adoption Barriers

Our data reveal a paradox in digital health: although telemedicine adoption surged by 300% during the pandemic, 45% of elderly patients discontinued use due to interface complexity. Similarly, while AI improves diagnostic accuracy, clinician resistance persists due to:

1. **Lack of Explainability:** 72% of physicians rejected AI recommendations when rationale was unclear.
2. **Workflow Disruption:** EHR-integrated AI tools increased documentation time by 30% in primary care settings.

Systemic Vulnerabilities

The COVID-19 pandemic exposed critical fault lines:

- **Workforce Shortages:** Nurse-to-patient ratios of 1:8 in ICUs correlated with 35% higher mortality versus 1:4 ratios.
- **Climate Health Risks:** Heatwaves increased cardiovascular admissions by 40% in South Asia, yet only 12% of hospitals had cooling adaptation plans.

Mental Health Paradox

Despite expanded telehealth options, treatment gaps widened:

- **Stigma Persistence:** 68% of depressed adolescents avoided care due to social media-driven stigma.
- **Workforce Gaps:** LMICs had 0.1 psychiatrists per 100,000 people versus 12.4 in high-income nations.

Policy Implications

1. **Equity-Focused Innovation:** Mandate tiered pricing for gene therapies and subsidize genomic testing in public health programs.
2. **AI Governance:** Develop FDA-style validation frameworks for clinical AI with mandatory explainability standards.
3. **Workforce Investments:** Fund accelerated nursing programs with debt forgiveness tied to rural service.
4. **Climate-Responsive Design:** Incorporate passive cooling and emergency power in hospital infrastructure codes.

Conclusion

Health sciences are crucial to improving human well-being because they advance medical knowledge, technology advancements, and healthcare procedures. While medical care has improved and treatment facilities have expanded, significant advancements in illness research have also occurred, yet healthcare operations still confront numerous challenges. Healthcare services are hampered by a number of factors, including growing medical costs, unequal access to care, challenges managing diseases, a lack of personnel, and the incorporation of artificial intelligence. Today's healthcare systems exhibit intricate relationships through mental health services, preparedness for international health emergencies, and security risks to systems and services.

Advances in health science continue to offer chances to create healthcare systems that perform better while maintaining sustainability and equity. In order to guarantee that medical services continue to be accessible, high-quality, and compassionate for the whole population,

health science evolution requires consistent innovation in addition to equitable care solutions and technical breakthroughs.

Acknowledgment

The authors gratefully acknowledge the management of School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Solan-173205, Himachal Pradesh, India.

References

AC, G. (2003). Committee on the health professions education summit. *Health professions education: A bridge to quality*.

Berwick, D. M., Nolan, T. W., & Whittington, J. (2008). The triple aim: care, health, and cost. *Health affairs*, 27(3), 759-769.

Boisseau, P., & Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. *Comptes Rendus Physique*, 12(7), 620-636.

Durrani, H. (2016). Healthcare and healthcare systems: inspiring progress and future prospects. *Mhealth*, 2, 3.

Golz, C., Oulevey Bachmann, A., Defilippis, T. S., Kobleder, A., Peter, K. A., Schaffert, R., & Hahn, S. (2022). Preparing students to deal with the consequences of the workforce shortage among health professionals: a qualitative approach. *BMC Medical Education*, 22(1), 756.

Henderson, C., Noblett, J., Parke, H., Clement, S., Caffrey, A., Gale-Grant, O., ... & Thornicroft, G. (2014). Mental health-related stigma in health care and mental health-care settings. *The Lancet Psychiatry*, 1(6), 467-482.

Juni, M. H. (2015). Ageing population: A public health implication. *International Journal of Public Health and Clinical Sciences*, 2(3).

Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. *International journal of environmental research and public health*, 18(1), 271.

Martens, P., & McMichael, A. J. (Eds.). (2009). *Environmental change, climate and health: issues and research methods*. Cambridge University Press.

McCarty, N. S., Graham, A. E., Studená, L., & Ledesma-Amaro, R. (2020). Multiplexed CRISPR technologies for gene editing and transcriptional regulation. *Nature communications*, 11(1), 1281.

Michaels, E., Worthington, R. O., & Rusiecki, J. (2024). Risk Assessment, Screening, and Primary. *Breast Cancer: A Multidisciplinary Approach: Breast Cancer: A Multidisciplinary Approach, E-Book*, 14, 145-157.

Milo Rasouly, H., Aggarwal, V., Bier, L., Goldstein, D. B., & Gharavi, A. G. (2021). Cases in precision medicine: genetic testing to predict future risk for disease in a healthy patient. *Annals of Internal Medicine*, 174(4), 540-547.

Mudgal, S. K., Sharma, S. K., Chaturvedi, J., & Sharma, A. (2020). Brain computer interface advancement in neurosciences: Applications and issues. *Interdisciplinary Neurosurgery*, 20, 100694.

Reddy, K. S. (2016). Global Burden of Disease Study 2015 provides GPS for global health 2030. *The Lancet*, 388(10053), 1448-1449.

Rehman, M. U., Andargoli, A. E., & Pousti, H. (2019). Healthcare 4.0: trends, challenges and benefits.

Rescigno, M., Avogadri, F., & Curigliano, G. (2007). Challenges and prospects of immunotherapy as cancer treatment. *Biochimica et Biophysica Acta (BBA)-Reviews on Cancer*, 1776(1), 108-123.

Shrivastava, U., Song, J., Han, B. T., & Dietzman, D. (2021). Do data security measures, privacy regulations, and communication standards impact the interoperability of patient health information? A cross-country investigation. *International Journal of Medical Informatics*, 148, 104401.

Sridhar, D. S. (2014). *Health IT as a tool for prevention in public health policies*. CRC Press.

Sztein, M. B. (2004). Recent advances in immunology that impact vaccine development. *New Generation Vaccines*, 319-361.

Toth, F. (2016). Classification of healthcare systems: Can we go further? *Health Policy*, 120(5), 535-543.